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ABSTRACT

In this paper, a new generalized bimodal power exponential distribution is proposed. 
The Characterization of this distribution is investigated and special cases are considered. 
The problem of obtaining the maximum-likelihood estimates for the parameters of the 
distribution is studied and the information matrix is derived. A simulation study to assess 
the properties of the maximum likelihood estimators is carried out. Finally, two 
illustrative examples are presented. 
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1. INTRODUCTION

Data that exhibit bimodal behavior arises in many different disciplines. In medicine, 
urine mercury excretion has two peaks, see for example, Ely et al. (1999). In material 
characterization, a study conducted by Dierickx et al. (2000), grain size distribution data 
reveals a bimodal structure. In meteorology, Zhang et al. (2003) indicated that, water 
vapor in tropics, commonly have bimodal distributions. The most commonly used 
distribution in modeling bimodal data is the two-component normal mixture. Many 
authors have proposed the bimodal normal distribution, see for example, Sarma et al. 
(1990), Bhagavan et al. (1983), Rao et al. (1988), Prasada Rao (1987), and Rao et al. 
(1987) but these studies did not materialize in the real world of statistics. The bimodal 
normal is closely related to the Exponential Power Family (EPF) which is considered as 
one of the most important probability distributions in statistics. Different forms of this 
family have been studied in the literature. The symmetric exponential power distribution 
with normal, Laplace and rectangular as special cases was considered by Subbotin 
(1923), Box (1953), Turner (1960), Box and Tiao (1992) and others. Box and Tiao (1992) 
explain the use of such family of distributions in a Bayesian context. The skew 
exponential power distribution has been studied by Azzalini (1985), Azzalini and Dalla 
Valle (1996), Azzalini and Capitanio (1999), and Mudholkar and Hutson (2000). Most 
recently the generalization of skew normal was investigated by Gupta and Brown (2001), 
Gupta and Gupta (2004). DiCiccio and Monti (2004) investigated inferential aspects of 
the skew exponential power distribution. Despite all these studies on the unimodal 
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symmetric exponential power distribution, the general form of the bimodal exponential 
power distribution is not yet considered in the literature except the special case of the 
bimodal normal. The two general cases of the exponential power distribution; the 
symmetric bimodal and the skew bimodal can be investigated separately. This paper 
considers the symmetric bimodal exponential power distribution which has the unimodal 
symmetric exponential power distribution as a special case. This distribution can be used 
as an alternative to the two component normal mixtures in modeling bimodal data, since 
it is more flexible, parsimonious and has the advantage of estimation simplicity.

Definition and properties of the proposed bimodal exponential power distribution are 
given in Section 2. The characterization of the distribution is studied in Section 3. The 
inferential aspects of the proposed distribution are discussed theoretically in Section 4 
and numerically in Section 5. Two illustrative examples in which the bimodal 
exponential power distribution is used in modeling bimodal data are given in Section 6. 
General conclusions and possible extensions of the proposed distribution are given in 
Section 7. 

2. DEFINITION AND SOME PROPERTIES

2.1 Definition
A random variable X is said to have a bimodal exponential power distribution 

( , , , )BEP     if there exist parameters ,  0, 1,  0           such that the 

density function of X has the form 

( ) ,
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    
    

(2.1)

where  is a location parameter and  is a scale parameters. Fig. (1a) shows the 

(0,1,1, )BEP  densities for 1,2,3  and Fig. (1b) shows the (0,1, , 2)BEP  densities 

for 0,1,5  .

Clearly  is a scale parameter, and it is inversely related to the variance of the 
distribution, where as the  is the bimodality parameter. It is interesting to note that, if 
the shape parameter 0  , BEP coincides with the general unimodal symmetric 
exponential power distribution with the normal and the Laplace as special cases.
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Fig. 1: Densities of the (a) (0,1,1, )BEP 
(b) (0,1, , 2)BEP 

2.2 Moments and Other Measures

Theorem 1: If ~ ( , , , )X BEP     then the central moments of X are given by
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For 2 1k m  , 
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It can be easily seen that 
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(2.3)

and the kurtosis of X is 
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. (2.4)

3. CHARACTERIZATION OF ( , , , )BEP    

3.1 Maximum Entropy Property
Many families of univariate probability distributions are known to maximize the 

entropy among distributions that satisfy given constraints on the expectations of certain 
statistics. Examples of such families are the Beta, Gamma, and the normal distributions. 

Theorem 2: Let W have an ( , , , )BEP     distribution with density f given by (2.1). 

Then the entropy of W is given by 
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is the digamma function and  is the partial derivative of the 

gamma function with respect to  .
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Lemma 1: Let 1  0  and 1  1   and let
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       (3.2)

be a probability density function, then 

1. 2
1

1

1
( ) ln | |pE Y   

   
 

2.  
2

1/2
2 1

11
( ) ln | | lnpE Y




           
where  0 1 2, , ,      .

Proof:

 2
0

1 10 02 2
12

1

0
1

2
| | 2w w e

e e w dw e w e dw
 

 


 
     




 

 
  ,

So 

 
12

0

2

1

12
e

 



 


 



,

In part (1), we have 

   
 1 12 2 2

1 2
12

2 2

1

| |1 1 2
1 1 1

1
1

1 12
| | | | | |

2 2

wE W w e w dw

   
 

 


 
    

    
 

      
  

    


Also 



A Bimodal Exponential Power Distribution384

 
   

1 12 2

1 12 2

2 2

1 1| |

1 1
0

ln | | ln | | | | 2 ln( )
2 2

w wE W w e w dw w e w dw

   
   

    
   


 

   
 

 
 

Using integration by substitution, the above integration simplifies to
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Right side of the above equation simplifies to 
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Theorem 3: The random variable W with a Bimodal Power Exponential Distribution 
with parameter  has the maximum entropy among all positive, absolutely continuous 

random variables X with pdf  p x subject to the constraints

1( ) pE X
   (3.3)

 2 ( ) ln | |pE X   (3.4)

where 1( )  and 2 ( )  are defined in Lemma (1Error! Reference source not found.). 
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Jensen’s inequality, we have
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Consider the probability measure W , which satisfies the constraints in (3.3) and 
(3.4), and has the pdf of the form
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We have 
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The upper bound of the above entropy is achieved by the Bimodal Exponential Power 
distribution and the form of its pdf is (3.5).

3.2 Transformations
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By the fundamental theorem of calculus, we have 
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Similarly, for 0x  , 
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The notation  2,BN   for bimodal normal will be used throughout the paper.

Theorem 5 (Standard Bimodal Normal): If X has a bimodal normal distribution and
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It follows that the moment generating function of X is given by 
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From the moment generating function of the bimodal normal, we can see that, unlike 
the normal, the sum of independent bimodal normals is not a bimodal normal.

Theorem 6: If  ~ 0,1Z BN and 2W Z then  2~ 3W  . 

Proof:

 
2

2

2
2

2
2

0

( )

2

2
2

zw

w

zw

P W w P w Z w

z
e dz

z
e dz







    











letting 2t z and using the fundamental theorem of calculus the pdf of W is as follows 
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which is the pdf of a Chi-square distribution with three degrees of freedom.

Theorem 7: If 1 ~ (0, 1)Z BN and 2 ~ (0, 1)Z BN are independent and 1 2V Z Z then 

V is distributed as a bimodal Cauchy with the following pdf 
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By using integration by substitution we obtain (3.10). It is important to note that, the 
bimodality is preserved, and the resulting distribution is a bimodal Cauchy.

Theorem 8: If  2~ ,X BN   and XS e then S is distributed as a log-normal of the 

second-type  2,SLog   with the pdf 
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2

s
s

f s e s
s





 


.

It is interesting to see that the above log-normal is not bimodal but a unimodal. We 
call it a log-normal distribution of the second-type.

4. ESTIMATION

If ~ ( , , , )X BEP     and 
x

z





, the loglikehood function can be written as 

1
log log 2 log log logL z z

             

and the elements of the score vector are 

S
    1sign z

sign z z
z

 
 

 

S
1

z
  

 
 

S

 
2

1
1

1
logz z



        


S

1

log z

     


.

Thus, elements of the information matrix are given by 

I
  1

2 2 2

1 1
E z E

z


               

I
   2 2

11
E z

   
 

 
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I  23 4 2

1 1
2

1
logE z z


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I 2
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
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E sign z z
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.

So, the information matrix is given by 
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     21 1 1

2 4 3 3

( 1)( 1) 2( 1) ( 1)1
I

  
  



           
   
   

where  and  are the digamma and the trigamma functions respectively. The 
information matrix does not exist for 1  .

5. SIMULATION RESULTS

A simulation study was conducted to assess the properties of the maximum likelihood 
estimates of the two parameters;  and  using sample sizes of 50, 100, 200, 500 and 
1000. For every case, 1000 samples from the bimodal exponential power with the 
specified parameters are drawn. By using Theorem (3.2) we can easily generate random 
samples from the ( , , , )BEP     through the following steps: 

• Generate Y from 
1

,1Gamma
  

  

• Generate U from Uniform (0,1) 

• If 0.5U  , set 1I  , else set 1I  

• Set 
1

X IY   

The biases and the root mean squared errors (RMSEs) of the MLE estimators are 
shown in Tables 1-2. In Table (1), the samples were drawn from the standard bimodal 
exponential power distribution with  0,  1,  1,  2,  3,  4      and 5  . In Table 

(2), the samples were drawn from the bimodal exponential power distribution with 
0  , 1  , 2  and  = (1.5, 2, 2.5, 3). The biases of the maximum likelihood 

estimates; ̂ and ̂ diminish for large samples while the RMSEs are quite large 
especially when 100n  . The RMSEs increase with the value of � but not with the value 
of  . To get reliable estimates of  and  , relatively large samples are required. To 
examine the accuracy of the standard errors obtained by inverting the observed 
information matrix and the coverage probability of the asymptotic confidence intervals, 
another simulation study was performed with 1000 samples using sample sizes of 50, 
100, 200, 500 and 1000. The study focused on the two parameters;  and  and samples 
were drawn from the standard bimodal exponential power distribution with 2    . 
The coverage probabilities of the obtained 95% confidence intervals are reported in Table 
(3) and are very close to the nominal level. The results suggested that the obtained 
standard errors and hence the asymptotic confidence intervals are reliable.
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Table 1:
Biases and RMSEs of the maximum likelihood estimates from (0,1,5, )BEP 

̂ ̂
 n Bias RMSE Bias RMSE

1 50 0.0116 0.3649 0.2381 7.4726

100 0.0070 0.2191 0.1535 4.8167

200 0.0029 0.0911 0.0524 1.6452

500 0.0009 0.0269 0.0205 0.6383

1000 0.0007 0.0224 0.0122 0.3792

2 50 0.0320 0.9983 0.2463 7.6863

100 0.0159 0.4961 0.1196 3.7369

200 0.0075 0.2341 0.0616 1.9225

500 0.0048 0.1494 0.0266 0.8220

1000 -0.0003 0.0089 -0.0011 0.0333

3 50 0.0631 1.9758 0.2142 6.7139

100 0.0273 0.8464 0.1014 3.1497

200 0.0124 0.3878 0.0402 1.2528

500 0.0055 0.1708 0.0096 0.2944

1000 0.0039 0.1195 0.0143 0.4396

4 50 0.1092 3.4248 0.1910 5.9870

100 0.0569 1.7769 0.1132 3.5355

200 0.0140 0.4347 0.0354 1.0991

500 0.0129 0.3979 0.0160 0.4928

1000 0.0075 0.2282 0.0141 0.4316
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Table 2:
Biases and RMSEs of the maximum likelihood estimates from (0,1, , 2)BEP 

̂ ̂
 n Bias RMSE Bias RMSE

1.5 50 0.0766 2.4124 0.5957 3.0152

100 0.0363 1.1453 0.5410 1.2916

200 0.0137 0.4278 0.5204 0.6392

500 0.0004 0.0130 0.5035 0.1098

1000 0.0031 0.0955 0.5041 0.1263

2 50 0.0500 1.5710 0.0892 2.8041

100 0.0186 0.5860 0.0523 1.6450

200 0.0100 0.3154 0.0141 0.4429

500 0.0046 0.1441 0.0077 0.2385

1000 0.0032 0.0989 0.0034 0.1041

2.5 50 0.0439 1.3770 0.6260 3.9568

100 0.0190 0.5986 0.5443 1.3924

200 0.0081 0.2531 0.5287 0.8971

500 0.0022 0.0690 0.5051 0.1588

1000 0.0027 0.0824 0.5077 0.2382

3 50 0.0301 0.9438 0.0939 2.9384

100 0.0196 0.6147 0.0748 2.3470

200 0.0089 0.2765 0.0332 1.0357

500 0.0038 0.1160 0.0203 0.6262

1000 0.0022 0.0687 0.0094 0.2905

Table 3:
Coverage probability for the standard asymptotic 95% confidence intervals

Sample
size

Coverage Probability
 

50 0.9454 0.9464

100 0.9475 0.9556

200 0.9413 0.9342

500 0.9495 0.9475

1000 0.9592 0.9550
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6. ILLUSTRATIVE EXAMPLES

6.1 Height Data
These data represent the height in inches of 126 students from University of 

Pennsylvania (Cruz-Medina 2001). Fig. (2a) shows that the heights distribution is 
roughly symmetric bimodal. Four models are fitted to the data; normal mixture with two 
components, bimodal exponential power, bimodal normal and bimodal Laplace 

( ,  ,1,1)BEP   . The maximum likelihood method is used to estimate the parameters in 

the fitted models. Table (4) displays the MLE estimates, the corresponding AIC 
(Akaike’s Information Criterion) and Kolmogorov-Smirnov statistic for the fitted models. 
A histogram of the height data with the four fitted models is presented in Fig. (2a). The 
empirical CDF and the fitted CDFs of the four models are given in Fig. (2b). Fig. (2a) 
shows that the normal-mixture model failed to capture the bimodality of the data while 
the three models based on the bimodal exponential power distribution did capture the two 
modes. The bimodal exponential power model has the smallest K-S statistic and the 
second smallest AIC. The bimodal Laplace stands as a good competitor with less 
parameters and has the smallest AIC. The bimodal normal and the normal mixture did not 
perform well. Based on the graphical and the numerical results, the bimodal exponential 
power distribution is considered the best model for the heights data.

Table 4:
Estimates, AIC, and KS statistic (P-value) for Height data

Model Estimated parameters AIC K-S statistic (P-value)
ˆ 0.8119p 

Normal Mixture 1 1ˆ ˆ67.56, 3.75    367.668 0.0547 (0.8220)

2 2ˆ ˆ72.80, 2.84   

BEP ˆˆ 68.43, 2.67    361.54 0.0503 (0.8882)

ˆˆ 1.22, 0.73   

Bimodal Laplace ˆˆ 68.42, 1.70    357.71 0.0550 (0.8170)

Bimodal Normal ˆ ˆ68.44, 2.39    398.61 0.1189 (0.0520)
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Fig. 2: (a) Histogram and density estimates 
(b) Empirical CDF and the CDF’s of the fitted models for the heights data using 

normal mixtures, Bimodal Exponential Power, Bimodal Normal and Bimodal 
Laplace, respectively

6.2 Egg Size Data
These data represent the logarithm of the egg diameters of 88 asteroid species (Sewell 
and Young (1997), Famoye et al. (2004)). The distribution of the data is roughly 
symmetric bimodal as shown in Fig. (3a). The normal mixture and two different cases of 
the bimodal exponential power models are fitted to the data. The bimodal exponential 
power models are ( , , , )BEP     and ( , , 2,1)BEP   . Table (5) gives the estimates, the 

corresponding AIC and Kolmogorov-Smirnov test for the fitted models. Fig. (3a) 
presents the egg size data with the fitted models while the empirical CDF with the CDFs 
of these fitted models are given in Fig. (3b). Fig. (3a) shows that the normal mixture 
fitted well at the tails but did very badly in the middle. The bimodal exponential power 
models did fit the data adequately in middle but not in the tails. The normal mixture 
model has the smallest AIC and K-S statistic. The ( , ,1,2)BEP   model has the second 

lowest K-S value while the general BEP model tends to have the second lowest AIC.

Table 5:
Estimates, AIC, and KS statistic for asteroid data

Model Estimated parameters AIC K-S statistic (P-value)
ˆ 0.3875p 

Normal Mixture 1 1ˆ ˆ5.00, 0.223    111.31 0.0714 (0.7312)

2 2ˆ ˆ6.75, 0.606   

BEP ˆˆ 5.86, 1.08    121.18 0.1368 (0.0667)

ˆˆ 2.18, 0.95   

 , ,1, 2BEP   ˆˆ 6.02, 0.98    125.44 0.0952 (0.3805)
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Fig. 3: (a) Histogram and density estimates 
(b) Empirical CDF and the CDF’s of the fitted models for the asteroid data using 

normal mixtures, BEP1 (Bimodal Exponential Power) and BEP2 (BEP with 
1  and 2  )

7. CONCLUSION AND POSSIBLE EXTENSIONS OF BEP

In this paper we have proposed a family of flexible bimodal distributions that can be 
used as an alternative to the normal mixtures in modeling bimodal data. This family is 
more parsimonious than the normal mixtures and has the advantage of estimation 
simplicity over the mixtures. The family, which we call the bimodal exponential power 
distribution can be extended to a bimodal skew exponential power distribution, since if 

    2 ( )q x f x F x  , where  f x and  F x are the density and the distribution 

functions of the symmetric bimodal exponential distribution respectively then  q x is a 

skewed density function, and  is a skewness parameter. The characterization of the 
bimodal exponential distribution is investigated. Simulation examples did show that such 
estimation procedures performed well. Real data examples demonstrated that bimodal 
exponential power distribution is flexible, parsimonious, and competitive model that 
deserves to be added to existing distributions in modeling bimodal data.
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Abstract


In this paper, a new generalized bimodal power exponential distribution is proposed. The Characterization of this distribution is investigated and special cases are considered. The problem of obtaining the maximum-likelihood estimates for the parameters of the distribution is studied and the information matrix is derived. A simulation study to assess the properties of the maximum likelihood estimators is carried out. Finally, two illustrative examples are presented. 
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1. Introduction



Data that exhibit bimodal behavior arises in many different disciplines. In medicine, urine mercury excretion has two peaks, see for example, Ely et al. (1999). In material characterization, a study conducted by Dierickx et al. (2000), grain size distribution data reveals a bimodal structure. In meteorology, Zhang et al. (2003) indicated that, water vapor in tropics, commonly have bimodal distributions. The most commonly used distribution in modeling bimodal data is the two-component normal mixture. Many authors have proposed the bimodal normal distribution, see for example, Sarma et al. (1990), Bhagavan et al. (1983), Rao et al. (1988), Prasada Rao (1987), and Rao et al. (1987) but these studies did not materialize in the real world of statistics. The bimodal normal is closely related to the Exponential Power Family (EPF) which is considered as one of the most important probability distributions in statistics. Different forms of this family have been studied in the literature. The symmetric exponential power distribution with normal, Laplace and rectangular as special cases was considered by Subbotin (1923), Box (1953), Turner (1960), Box and Tiao (1992) and others. Box and Tiao (1992) explain the use of such family of distributions in a Bayesian context. The skew exponential power distribution has been studied by Azzalini (1985), Azzalini and Dalla Valle (1996), Azzalini and Capitanio (1999), and Mudholkar and Hutson (2000). Most recently the generalization of skew normal was investigated by Gupta and Brown (2001), Gupta and Gupta (2004). DiCiccio and Monti (2004) investigated inferential aspects of the skew exponential power distribution. Despite all these studies on the unimodal symmetric exponential power distribution, the general form of the bimodal exponential power distribution is not yet considered in the literature except the special case of the bimodal normal. The two general cases of the exponential power distribution; the symmetric bimodal and the skew bimodal can be investigated separately. This paper considers the symmetric bimodal exponential power distribution which has the unimodal symmetric exponential power distribution as a special case. This distribution can be used as an alternative to the two component normal mixtures in modeling bimodal data, since it is more flexible, parsimonious and has the advantage of estimation simplicity.



Definition and properties of the proposed bimodal exponential power distribution are given in Section 2. The characterization of the distribution is studied in Section 3. The inferential aspects of the proposed distribution are discussed theoretically in Section 4 and numerically in Section 5. Two illustrative examples in which the bimodal exponential power distribution is used in modeling bimodal data are given in Section 6. General conclusions and possible extensions of the proposed distribution are given in Section 7. 


2. Definition and Some Properties


2.1
Definition



A random variable 
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 is said to have a bimodal exponential power distribution 
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where 
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 is a location parameter and 
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 is a scale parameters. Fig. (1a) shows the 
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Clearly 
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 is a scale parameter, and it is inversely related to the variance of the distribution, where as the 
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 is the bimodality parameter. It is interesting to note that, if the shape parameter 
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, BEP coincides with the general unimodal symmetric exponential power distribution with the normal and the Laplace as special cases.
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2.2
Moments and Other Measures


Theorem 1: If 
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Proof:
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It can be easily seen that 
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and the kurtosis of 
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3. Characterization of 
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3.1
Maximum Entropy Property



Many families of univariate probability distributions are known to maximize the entropy among distributions that satisfy given constraints on the expectations of certain statistics. Examples of such families are the Beta, Gamma, and the normal distributions. 
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Lemma 1: Let 
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be a probability density function, then 
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In part (1), we have 
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Using integration by substitution, the above integration simplifies to
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Right side of the above equation simplifies to 
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Theorem 3: The random variable 
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 with a Bimodal Power Exponential Distribution with parameter 
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Consider the probability measure 
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, which satisfies the constraints in (3.3) and (3.4), and has the pdf of the form
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We have 
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The upper bound of the above entropy is achieved by the Bimodal Exponential Power distribution and the form of its pdf is (3.5).


3.2
Transformations


Theorem 4 If 
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By the fundamental theorem of calculus, we have 
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Similarly, for 
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By the fundamental theorem of calculus, we have 
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Finally, combine (3.6) and (3.7) to obtain 
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Corollary 1: If
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Definition 1: A random variable 
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 is said to have a bimodal normal distribution with parameters 
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Letting 
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The notation 
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 for bimodal normal will be used throughout the paper.


Theorem 5 (Standard Bimodal Normal): If X has a bimodal normal distribution and 
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with a moment generating function 
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It follows that the moment generating function of 
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From the moment generating function of the bimodal normal, we can see that, unlike the normal, the sum of independent bimodal normals is not a bimodal normal.


Theorem 6: If 
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Proof: 
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letting 
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which is the pdf of a Chi-square distribution with three degrees of freedom.


Theorem 7: If 
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Proof:
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By using integration by substitution we obtain (3.10). It is important to note that, the bimodality is preserved, and the resulting distribution is a bimodal Cauchy.


Theorem 8: If 

[image: image112.wmf](


)


2


~,


XBN


ms


 and 

[image: image113.wmf]X


Se


=


 then 

[image: image114.wmf]S


 is distributed as a log-normal of the second-type 

[image: image115.wmf](


)


2


,


SLog


ms


 with the pdf 






[image: image116.wmf]2


2


(log)


2


2


3


(log)


(),0


2


s


s


fses


s


-m


-


s


-m


=>


ps


.


It is interesting to see that the above log-normal is not bimodal but a unimodal. We call it a log-normal distribution of the second-type.


4. Estimation
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and the elements of the score vector are 
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Thus, elements of the information matrix are given by 
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So, the information matrix is given by 
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5. Simulation Results



A simulation study was conducted to assess the properties of the maximum likelihood estimates of the two parameters; 
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 using sample sizes of 50, 100, 200, 500 and 1000. For every case, 1000 samples from the bimodal exponential power with the specified parameters are drawn. By using Theorem (3.2) we can easily generate random samples from the 
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The biases and the root mean squared errors (RMSEs) of the MLE estimators are shown in Tables 1-2. In Table (1), the samples were drawn from the standard bimodal exponential power distribution with 
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. In Table (2), the samples were drawn from the bimodal exponential power distribution with 
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= (1.5, 2, 2.5, 3). The biases of the maximum likelihood estimates; 
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. The RMSEs increase with the value of  but not with the value of 
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, relatively large samples are required. To examine the accuracy of the standard errors obtained by inverting the observed information matrix and the coverage probability of the asymptotic confidence intervals, another simulation study was performed with 1000 samples using sample sizes of 50, 100, 200, 500 and 1000. The study focused on the two parameters; 
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. The coverage probabilities of the obtained 95% confidence intervals are reported in Table (3) and are very close to the nominal level. The results suggested that the obtained standard errors and hence the asymptotic confidence intervals are reliable.


Table 1:

Biases and RMSEs of the maximum likelihood estimates from 
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Table 2:

Biases and RMSEs of the maximum likelihood estimates from 
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Table 3:

Coverage probability for the standard asymptotic 95% confidence intervalstc "3 Coverage probability for the standard asymptotic 95% confidence intervals" \f t
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		50

		0.9454

		0.9464



		100

		0.9475

		0.9556



		200

		0.9413

		0.9342



		500

		0.9495

		0.9475



		1000

		0.9592
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6. Illustrative Examples


6.1
Height Data



These data represent the height in inches of 126 students from University of Pennsylvania (Cruz-Medina 2001). Fig. (2a) shows that the heights distribution is roughly symmetric bimodal. Four models are fitted to the data; normal mixture with two components, bimodal exponential power, bimodal normal and bimodal Laplace 

[image: image189.wmf](, ,1,1)


BEP


my


. The maximum likelihood method is used to estimate the parameters in the fitted models. Table (4) displays the MLE estimates, the corresponding AIC (Akaike’s Information Criterion) and Kolmogorov-Smirnov statistic for the fitted models. A histogram of the height data with the four fitted models is presented in Fig. (2a). The empirical CDF and the fitted CDFs of the four models are given in Fig. (2b). Fig. (2a) shows that the normal-mixture model failed to capture the bimodality of the data while the three models based on the bimodal exponential power distribution did capture the two modes. The bimodal exponential power model has the smallest K-S statistic and the second smallest AIC. The bimodal Laplace stands as a good competitor with less parameters and has the smallest AIC. The bimodal normal and the normal mixture did not perform well. Based on the graphical and the numerical results, the bimodal exponential power distribution is considered the best model for the heights data.


Table 4:

Estimates, AIC, and KS statistic (P-value) for Height datatc "4 Estimates, AIC, and KS statistic (P-value) for Height data" \f t
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Fig. 2: 
(a)
Histogram and density estimates 


(b)
Empirical CDF and the CDF’s of the fitted models for the heights data using normal mixtures, Bimodal Exponential Power, Bimodal Normal and Bimodal Laplace, respectivelytc "2  (a) Histogram and density estimates (b) Empirical CDF and the CDF’s of the fitted models for the heights data using normal mixtures, Bimodal Exponential Power, Bimodal Normal and Bimodal Laplace, respectively" \f f

6.2 Egg Size Data


These data represent the logarithm of the egg diameters of 88 asteroid species (Sewell and Young (1997), Famoye et al. (2004)). The distribution of the data is roughly symmetric bimodal as shown in Fig. (3a). The normal mixture and two different cases of the bimodal exponential power models are fitted to the data. The bimodal exponential power models are 
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. Table (5) gives the estimates, the corresponding AIC and Kolmogorov-Smirnov test for the fitted models. Fig. (3a) presents the egg size data with the fitted models while the empirical CDF with the CDFs of these fitted models are given in Fig. (3b). Fig. (3a) shows that the normal mixture fitted well at the tails but did very badly in the middle. The bimodal exponential power models did fit the data adequately in middle but not in the tails. The normal mixture model has the smallest AIC and K-S statistic. The 
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 model has the second lowest K-S value while the general BEP model tends to have the second lowest AIC.


Table 5:

Estimates, AIC, and KS statistic for asteroid datatc "5 Estimates, AIC, and KS statistic for asteroid data" \f t

		Model

		Estimated parameters

		AIC

		K-S statistic (P-value)
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Fig. 3: (a)
Histogram and density estimates 


(b) Empirical CDF and the CDF’s of the fitted models for the asteroid data using normal mixtures, BEP1 (Bimodal Exponential Power) and BEP2 (BEP with 
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)tc "3  (a) Histogram and density estimates (b) Empirical CDF and the CDF’s of the fitted models for the asteroid data using normal mixtures, BEP1 (Bimodal Exponential Power) and BEP1 (BEP with =1 and =2)" \f f

7. Conclusion and Possible Extensions of BEP



In this paper we have proposed a family of flexible bimodal distributions that can be used as an alternative to the normal mixtures in modeling bimodal data. This family is more parsimonious than the normal mixtures and has the advantage of estimation simplicity over the mixtures. The family, which we call the bimodal exponential power distribution can be extended to a bimodal skew exponential power distribution, since if 

[image: image211.wmf](


)


(


)


 2()


qxfxFx


µl


, where 

[image: image212.wmf](


)


fx


 and 

[image: image213.wmf](


)


Fx


 are the density and the distribution functions of the symmetric bimodal exponential distribution respectively then 
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 is a skewed density function, and 
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 is a skewness parameter. The characterization of the bimodal exponential distribution is investigated. Simulation examples did show that such estimation procedures performed well. Real data examples demonstrated that bimodal exponential power distribution is flexible, parsimonious, and competitive model that deserves to be added to existing distributions in modeling bimodal data.
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